\square
USN

Third Semester B.E. Degree Examination, July/August 2021 Fluid Mechanics

Time: 3 hrs .
Max. Marks: 100

Note: Answer any FIVE full questions.

1 a. Differentiate between:
i) Ideal fluids and Real fluids.
ii) Newtonian and Non-Newtonian fluids
iii) Dynamic viscosity and Kinematic viscosity
iv) Specific weight and specific volume.
b. Derive an expression for capillary fall of a liquid.
c. A hydraulic lift consists of a 25 cm diameter ram which slides in a 25.015 cm diameter cylinder, the annular space being filled with oil having kinematic viscosity of $0.025 \mathrm{~cm}^{2} / \mathrm{s}$ and specific gravity of 0.85 . If the rate of travel of ram is $9.15 \mathrm{~m} /$ minute, find the frictional resistance when 3.05 m of ram is engaged in cylinder.
(08 Marks)
2 a. Define the terms gauge pressure, vacuum pressure and absolute pressure. Indicate their relative position on a chart.
(06 Marks)
b. Explain how vacuum pressure can be measured with help of U-tube manometer. ($\mathbf{0 6}$ Marks)
c. Two pressure points in a water pipe are connected to a manometer which has the form of an invested U-tube. The space above water in two limbs of manometer is filled with toluene of specific gravity 0.875 . If the difference of level of water columns in two limbs is equal to 0.12 m , what is the corresponding difference of pressure?
(08 Marks)
3 a. Define: i) Total pressure i) Centre of pressure.
(04 Marks)
b. Derive an expression for horizontal and vertical components of resultant pressure on submerged curved surface.
(08 Marks)
c. A 3.8 m by 1.8 m wide rectangular gate AB is vertical and hinged at a point 0.20 m below centre of gravity of gate. The total depth of water is 7 m . What horizontal force must be applied at bottom of gate to keep the gate closed? (Refer Fig.Q.3(c)).
(08 Marks)

Fig.Q.3(c)

4 a. Differentiate:
i) Path line and stream line
ii) Steady and uniform flow
iii) Convective and local acceleration.
b. Derive the continuity equation for a steady and incompressible flow for three dimensions Cartesian coordinates.
(06 Marks)
c. If two dimensional potential flow, velocity potential is given by: $\phi=4 x(3 y-4)$, determine the velocity at point $(2,3)$. Determine also the value of stream function ψ at the point $(2,3)$.
(08 Marks)
5 a. What is kinetic energy correction factor? Explain.
(04 Marks)
b. Derive Euler's equation of motion from first principle and obtain Bernoulli's equation.
(06 Marks)
c. A bend in a pipe line conveying water gradually reduces from 0.6 m to 0.3 m diameter and deflects the flow through angle of 60°. At the larger end gauge pressure is $171.675 \mathrm{kN} / \mathrm{m}^{2}$. Determine magnitude and direction of force exerted by water on bend when the flow is 876 litres/s.
(10 Marks)
6 a. What are major energy losses and minor energy losses in pipes?
(04 Marks)
b. The rate of flow of water through horizontal pipe is $0.3 \mathrm{~m}^{3} / \mathrm{s}$. The diameter is suddenly enlarged from 250 mm to 500 mm . The pressure intensity in smaller pipe is $13.734 \mathrm{~N} / \mathrm{cm}^{2}$. Determine: i) Loss of head due to sudden enlargement ii) Pressure intensity in larger pipe and iii) Power lost due to enlargement.
(08 Marks)
c. The water flowing with a velocity of $2 \mathrm{~m} / \mathrm{s}$ in a pipe length 2000 m and diameter 600 mm . The thickness of pipe is 10 mm , and the valve is closed suddenly. Find rise in pressure if the pipe is considered to be elastic. The value of $\mathrm{E}=19.62 \times 10^{6} \mathrm{~N} / \mathrm{cm}^{2}$ for pipe material and $\mathrm{K}=19.62 \times 10^{4} \mathrm{~N} / \mathrm{cm}^{2}$ for water. Calculate the circumferential stress and longitudinal stress developed in the pipe wall.
(08 Marks)
7 a. Explain following with neat sketches:
i) Staff gauge
ii) Weight gauge
iii) Float gauge
iv) Hook gauge.
(08 Marks)
b. Describe the method of using current meter for measuring discharge of a stream. ($\mathbf{0 5}$ Marks)
c. A pitot tube was used to measure the quantity of water flowing in a pipe of 0.3 m diameter. The water was raised to a height of 0.25 m above the centre line of pipe in vertical limb of tube. If the mean velocity is 0.78 times the velocity at centre and coefficient of pitot tube is 0.98 , find quantity of water in litres per second, static pressure head at centre of pipe is 0.2 m .
(07 Marks)
8 a. Differentiate between:
i) Venturimeter and Venturiflume
ii) Rectangular notch and Cipolletti notch
iii) Weirs and notches.
(06 Marks)
b. Explain experimtnal determination of hydraulic coefficients of an orifice.
c. A rectangular channel 1.5 m wide has a discharge of 200 litres per second, which is measured by right angled V-notch weir. Find the position of apex of notch from bed of channel if maximum depth of water is not to exceed 1 m . Take $\mathrm{C}_{\mathrm{d}}=0.62$
(08 Marks)

